On a generalized Carleson inequality

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On generalized Hermite-Hadamard inequality for generalized convex function

In this paper, a new inequality for generalized convex functions which is related to the left side of generalized Hermite-Hadamard type inequality is obtained. Some applications for some generalized special means are also given.

متن کامل

On a generalized Wirtinger inequality

Let α (p, q, r) = inf (ku0kp kukq : u ∈W 1,p per (−1, 1) \ {0} , Z 1 −1 |u|r−2 u = 0 ) . We show that α (p, q, r) = α (p, q, q) if q ≤ rp+ r − 1 α (p, q, r) < α (p, q, q) if q > (2r − 1) p generalizing results of Dacorogna-Gangbo-Subía and others. 1 The main result In the present article we discuss the following minimization problem α (p, q, r) = inf ( kukp kukq : u ∈W 1,p per (−1, 1) \ {0} , Z...

متن کامل

On Generalized Carleson Operators of Periodic Wavelet Packet Expansions

Three new theorems based on the generalized Carleson operators for the periodic Walsh-type wavelet packets have been established. An application of these theorems as convergence a.e. for the periodic Walsh-type wavelet packet expansion of block function with the help of summation by arithmetic means has been studied.

متن کامل

On Generalized Holder Inequality

A FAMILY of inequalities concerning inner products of vectors and functions began with Cauchy. The extensions and generalizations later led to the inequalities of Schwarz, Minkowski and Holder. The well known Holder inequality involves the inner product of vectors measured by Minkowski norms. In this paper, another step of extension is taken so that a Holder type inequality may apply to general...

متن کامل

A Generalized Singular Value Inequality for Heinz Means

In this paper we will generalize a singular value inequality that was proved before. In particular we obtain an inequality for numerical radius as follows: begin{equation*} 2 sqrt{t (1-t)} omega(t A^{nu}B^{1-nu}+(1-t)A^{1-nu}B^{nu}) leq omega(t A + (1- t) B), end{equation*} where, $ A $ and $ B $ are positive semidefinite matrices, $ 0 leq t leq 1 $ and $ 0 leq nu leq frac{3}{2}.$

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 1984

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm-78-3-245-251